Optimal mass transportation and Mather theory
نویسندگان
چکیده
We study the Monge transportation problem when the cost is the action associated to a Lagrangian function on a compact manifold. We show that the transportation can be interpolated by a Lipschitz lamination. We describe several direct variational problems the minimizers of which are these Lipschitz laminations. We prove the existence of an optimal transport map when the transported measure is absolutely continuous. We explain the relations with Mather’s minimal measures. Résumé: On étudie le problème de transport de Monge lorsque le cout est l’action associée à un Lagrangien sur une variété compacte. On montre que le transport peut être interpolé par une lamination lipschitzienne. On décrit plusieurs problèmes variationnels directs dont ces laminations sont les minimiseurs. On montre l’existence d’une application de transport optimale lorsque la mesure transportée est absolument continue. On explique les relations avec les mesures minimisantes de Mather. Patrick Bernard Institut Fourier, Grenoble, on move to CEREMADE Université de Paris Dauphine Pl. du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16 France [email protected] Boris Buffoni School of Mathematics École Polytechnique Fédérale-Lausanne SB/IACS/ANA Station 8 1015 Lausanne Switzerland [email protected]
منابع مشابه
Aubry-mather Theory for Multi-dimensional Maps
In this paper we study a discrete multi-dimensional version of Aubry-Mather theory. We set this problem as an infinite dimensional linear programming problem and study its relations to Monge-Kantorowich optimal transport. The dual problem turns out to be a discrete analog of the Hamilton-Jacobi equations. As in optimal transport, Monge-Ampére equations also play a role in this problem. We prese...
متن کاملA Finite Dimensional Linear Programming Approximation of Mather’s Variational Problem
Mather variational principle, introduced by John N. Mather in [18, 19], is an important tool in Lagrangian dynamic. In recent years, several authors have studied this topic in connections with various fields such as weak Kam Theory ([5, 7, 10, 11]), Monge-Kantorovich mass transportation and geometric measure theory ([3, 4, 6, 13, 14]). In this paper we discuss a finite dimensional approximation...
متن کاملFast Transport Optimization for Monge Costs on the Circle
Consider the problem of optimally matching two measures on the circle, or equivalently two periodic measures on R, and suppose the cost c(x, y) of matching two points x, y satisfies the Monge condition: c(x1, y1)+ c(x2, y2) < c(x1, y2)+ c(x2, y1) whenever x1 < x2 and y1 < y2. We introduce a notion of locally optimal transport plan, motivated by the weak KAM (Aubry–Mather) theory, and show that ...
متن کاملMinimizers of Dirichlet functionals on the n−torus and the Weak KAM Theory
Given a probability measure μ on the n−torus T and a rotation vector k ∈ R, we ask wether there exists a minimizer to the integral ∫ Tn |∇φ + k|2dμ. This problem leads, naturally, to a class of elliptic PDE and to an optimal transportation (MongeKantorovich) class of problems on the torus. It is also related to higher dimensional Aubry-Mather theory, dealing with invariant sets of periodic Lagr...
متن کاملThe Monge Optimal Transportation Problem
We report here two recent developments in the theory of optimal transportation. The first is a proof for the existence of optimal mappings to the Monge mass transportation problem [16]. The other is an application of optimal transportation in geometric optics [19]. The optimal transportation problem, in general, deals with the redistribution of materials in the most economical way. The original...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004